Full EEG workshop
IN OFFICE SESSION
(LYON - FRANCE)

Day 1: From neuroanatomy to EEG signals

 

 

  • Fundamentals of neuroanatomy: brain cells and brain organization
  • Fundamental of Physical: electric and magnetic fields
  • Fundamentals of Bio-Physical: neurons and electric activity from cells to scalp

 

 

  • Amplifiers and signal
  • Fundamentals of electronics 
  • Analogical and digital signal
  • Hardware and Software
  • Differential amplification
  • Ground and reference

 

 

  • Pre-processing basics step
  • ERP / EFP
  • Spectral analysis method
  • Phase and connectivity
  • Deep source localization methods
  • ICA methods

 

 

 

 

  • Multimodal recording set up and time synchronization
  • Triggering and markers
  • Latency & jitter
  • Synchronization strategies 
  • Sampling rate, Nyquist theorem and aliasing
  • Sample quantification and resolution
  • Codification

Basics of neurophysiology

General overview of EEG amplifier technologies

General overview of analysis technics of EEG data

Multimodal signal and synchronization techniques

Day 2: Fundamentals of EEG signal processing and acquisition environment

Fundamentals of EEG signal processing

 

  • EEG analysis techniques (event-locked and block design)
  • Noise in ERP analysis (endogenous and exogenous artifacts)
  • Artifact reduction during acquisition
  • Attenuation and artifact removal techniques (filtering - criteria - methods)
  • FFT vs Wavelets
  • Measures for ERP analysis (trial-by-trial amplitude, average amplitude, latency and grand average)

 

 

 

  • Amplifier configuration (ActiveAmp - LiveAmp - actiCHamp)
  • EEG electrode technology (active - passive)
  • Noise source identification
  • Protocol feasibility in the environment

The acquisition environment (hand-on session)

Day 3: Acquiring EEG data from subjects

  • Data acquisition with various types of networks and electrodes

 

 

 

 

 

  • Data acquisition with various types of networks and electrodes

 

 

 

  • FFT analysis to determine sources of contamination

 

 

Comparative of different protocol combinations and possible layouts

Comparative data collection between referenced and non-referenced amplifiers.

Electromagnetics Contamination of the signal

Day 4: analyzing real acquired data using BRAIN VISION ANALYZER

 

 

  • Data inspection (interpolation or exclusion of channels, manual rejection)
  • Artifact rejection using criteria (gradient, amplitude, low activity or max-min)
  • Filtering
  • Referencing
  • Independent Component Analysis (ICA) component rejection
  • Data segmentation
  • Calculation of averages
  • FFT vs Wavelet analysis
  • Exporting data for statistical analysis
  • Connectivity analysis

Pre-processing and analysis of EEG data

Day 5: BCI-NFB Loop and AI session

BCI-NFB loop

 

 

  • Fundamental principles of brain-computer interfaces (BCI)
  • Definition and principles of neurofeedback
  • Applications of neurofeedback in enhancing cognitive performance, treating disorders, etc.
  • Strategies for designing BCI-NFB systems: selecting neurofeedback protocols, defining goals and feedback.
  • Discussion on real challenges and limitations of BCI-NFB systems
  • Hardware and software for BCI design (OpenBCI, OpenVibe)

 

 

 

  • Introduction to AI
  • AI in neuroscience
  • Explanatory example of AI application

Tracks and examples of AI applications to EEG data

Logo

© Copyright. Tous droits réservés.

Nous avons besoin de votre consentement pour charger les traductions

Nous utilisons un service tiers pour traduire le contenu du site web qui peut collecter des données sur votre activité. Veuillez consulter les détails dans la politique de confidentialité et accepter le service pour voir les traductions.